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Association between cardiometabolic
health and objectively-measured, free-living
sleep parameters: a pilot study in a rural
African setting
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Abstract

Objectives: To investigate the relationship between objectively-measured, free-living sleep quantity and quality,
and cardiometabolic health, in a rural African setting in 139 adults (≥40 years, female: n = 99, male: n = 40). Wrist-
mounted, tri-axial accelerometry data was collected over 9 days. Measures of sleep quantity and quality, and
physical activity were extracted from valid minute-by-minute data. Self-reported data included behavioural, health
and socio-demographic variables. Biological data included body composition, resting blood pressure and fasting
blood glucose, insulin and lipids. Logistic regression models were constructed with insulin resistance (IR) and
cardiometabolic (CM) risk, as dependent variables, adjusting for socio-demographic, behavioural and biological
factors.

Results: Nocturnal sleep time was longer in females (p = 0.054) and sleep quality was better in males (p ≤ 0.017).
Few participants slept > 9 h/night (4–5%), and 46–50% slept < 7 h/night. IR and CM risk was higher in females (p ≤
0.006). In adjusted models, sleep variables were independently associated with IR (p < 0.05). Sleep quantity was non-
linearly associated with CM risk (p ≤ 0.0398), and linearly associated with IR (p ≤ 0.0444). Sleep quality was linearly
related with CM risk and IR (p ≤ 0.0201). In several models, sleep quantity and sleep quality measures were
concurrently and significantly associated with IR (p ≤ 0.044).

Keywords: Insulin resistance, Metabolic syndrome, Anthropometry, Accelerometer, Actigraphy, Movement monitor,
Measurement

Introduction
Sleep health is closely linked to metabolic health with
several mechanisms linking poor sleep health to insulin
resistance and the metabolic syndrome (Smiley et al.
2019). Although there is extensive literature from indus-
trialised settings (Anothaisintawee et al. 2016), there is a
paucity of data from African settings, especially free-
living, objective measures of sleep (Cole et al. 2017).

Within the South African context, self-reported long
sleep duration is associated with poor cardiometabolic
health in mainly urban settings (Rae et al. 2018; Rae
et al. 2020). Given the lack of objectively-measured, free-
living sleep parameters in any South African setting, the
objective of this study was to use wrist-actigraphy to in-
vestigate the association between sleep parameters and
cardiometabolic health in a rural African setting during
a cross-sectional survey, and thus extend the findings of
self-report sleep duration and cardiometabolic health
(Rae et al. 2018; Rae et al. 2020; Mashinya et al. 2018).

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: ian.cook@ul.ac.za
1Physical Activity Epidemiology Laboratory (EDST), University of Limpopo
(Turfloop Campus), PO Box X1106, Sovenga, Limpopo Province 0727, South
Africa
Full list of author information is available at the end of the article

Sleep Science and PracticeCook et al. Sleep Science and Practice             (2021) 5:4 
https://doi.org/10.1186/s41606-020-00054-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s41606-020-00054-y&domain=pdf
http://orcid.org/0000-0001-5098-2936
http://creativecommons.org/licenses/by/4.0/
mailto:ian.cook@ul.ac.za


Main text
Methods
Dikgale health and demographic surveillance system site
(DHDSS) sample
A convenience sample of 167 adults was recruited from
the DHDSS site (April 2016 – October 2017) (Alberts
et al. 2015). These participants formed part of a larger
study cohort (≥40 years) (Mashinya et al. 2018; Ali et al.
2018). Trained field workers collected self-reported and
measured data from participants by means of question-
naires translated to the local vernacular (Sepedi), anthro-
pometry, oscillometric blood pressure measurement,
ultrasound scans, and venipuncture (Mashinya et al.
2018; Ali et al. 2018). We calculated body mass index
(BMI, kg/m2), and Conicity Index (CI) (Valdez et al.
1993). Questionnaire data included behavioural, health
and socio-demographic variables (Mashinya et al. 2018;
Ali et al. 2018). Nine day, free-living, wrist-mounted
accelerometry data was collected (Cook et al. 2020). The
ultrasound scans were not considered for this analysis.

Blood sample collection and analysis
A registered nurse collected fasting blood samples. The
samples were analysed centrally; procedures and calcula-
tions are described in detail elsewhere (Ali et al. 2018).
The Homeostasis Model Assessment of Insulin Resist-
ance (HOMA-IR) was calculated from fasting blood glu-
cose and insulin (Matthews et al. 1985).

Criteria for metabolic syndrome
In accordance with the harmonized Joint Interim State-
ment (JIS) definition (Alberti et al. 2009), the presence
of the Metabolic Syndrome (MetS) required three of the
following components, with waist circumference not a
prerequisite: elevated waist circumference (WC): females
≥92 cm, males ≥86 cm; elevated triglycerides (TG): ≥1.7
mmol/l; reduced high-density lipoprotein cholesterol
(HDL-C): men < 1.0 mmol/l, women < 1.3 mmol/l; ele-
vated resting blood pressure ≥ 130/85 mmHg or on
hypertension treatment; and elevated fasting glucose
(GC) ≥5.6 mmol/l or on diabetes treatment. For this
study population-specific WC cut-points were chosen
(Motala et al. 2011).
Using the five criteria from the JIS definition for MetS

(JIS-MetS), we calculated sex-specific z-scores for HDL-
C, TG, GC, WC and MAP (Mean Arterial Pressure),
which were summed to create a MetS z-Score (MetSz)
(Lee et al. 2019).

Accelerometer data collection and data reduction
Participants wore a small, light-weight, wrist-worn tri-
axial accelerometer for 9 days (ActiGraph wGT3X-BT,
Actigraph, LLC, Pensacola, FL, 2013) (Whitaker et al.
2018; Migueles et al. 2017; Slater et al. 2015; Full et al.

2018). The preparation, initialization, mounting, data
processing and extraction of physical activity (PA) and
sleep parameters are described in detail elsewhere (Cook
et al. 2020).
Vector Magnitude (VM)- and Ambulation-defined PA

variables were defined as counts/day and steps/day, re-
spectively (Wennman et al. 2019). Sleep indices included
Total Sleep Time (TST), Nocturnal Sleep Time (NST),
Sleep Efficiency (SE), Wake After Sleep Onset (WASO),
Activity Counts during sleep (AC), Sleep Fragmentation
Index (SFI) and sleep variation across days (within-per-
son total sleep time SD) (Ancoli-Israel et al. 2015;
Chung et al. 2016; Ko and Lee 2018). Nocturnal periods
were defined as 18 h01-05 h59. Sufficient sleep quantity
and quality was defined as 7–9 h (Hirshkowitz et al.
2015) and ≥ 85% (Fung et al. 2013), respectively.

Statistical analysis
Descriptive statistics comprised means (one standard devi-
ation), medians (inter-quartile range), variances (max-
imum, minimum) and frequencies. Relationships between
categorical variables were examined through Fisher’s
Exact Test. For continuous data, independent t tests and
Levene’s test examined differences between sexes and risk
groups. Where required a non-parametric test was
employed. Bi-variate relationships were examined using
linear regression.
Forced-entry binary logistic regression models were

constructed to examine the relationship between MetS
risk (low/high) according to the JIS definition (Alberti
et al. 2009), and tertiles (Q1 = low/Q2/Q3 = high) of
sleep quantity and quality variables. Models were also
constructed to examine the relationship between MetS
risk and sleep quantity and quality categories (Hirshko-
witz et al. 2015; Fung et al. 2013). Models were adjusted
for socio-demographic (age, socio-economic status), be-
havioural (fruit and vegetable intake, sugar-sweetened
beverages, tobacco and alcohol usage, physical activity)
and biological (sex, HIV status) variables. CI was not in-
cluded as an independent variable because WC formed
part of the JIS risk definition.
Forced-entry ordinal logistic regression models were

constructed to examine the relationship between
HOMA-IR levels (tertiles), and tertiles of sleep quantity
and quality variables. Additional models were con-
structed to examine the relationship between HOMA-IR
tertiles and sleep quantity and quality categories (Hirsh-
kowitz et al. 2015; Fung et al. 2013). Models were ad-
justed for socio-demographic (age, socio-economic
status), behavioural (fruit and vegetable intake, sugar-
sweetened beverages, tobacco and alcohol usage, phys-
ical activity) and biological (sex, CI, HIV status)
variables.
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All covariates were entered as quantiles. Regression
coefficients were expressed as odds ratios (OR ± 95%
confidence intervals).
Goodness of fit criteria included Akaike’s Information

Criteria (AIC) (all models), pseudo R2 (all models),
Hosmer-Lemeshow test (Binary logistic) and Area Under
the Curve (AUC) (Binary Logistic). Multicollinearity was
assessed using Variance Inflation Factors (VIF) and
Tolerance.
Post-hoc contrasts were run for binary and ordinal lo-

gistic regression models to test for linear and non-linear
trends, and pairwise comparison of groups (Bonferroni
correction).
Data were analysed using appropriate statistical soft-

ware (Stata/SE for Windows: Release 15.1. College Sta-
tion, TX: StataCorp LP, 2020). Significance for all
inferential statistics was set at p < 0.05.

Results
Of the 167 raw accelerometry data files, 157 had valid
data for at least one weekday and one weekend day.
Once combined with the questionnaire and biological
data, 139 participants had complete data.
Females consumed more sugar-sweetened beverages

(SSB), experienced poorer sleep quality, and were more
physically active and insulin resistant (Table 1, p ≤ 0.07).
Males were leaner, used more alcohol and tobacco prod-
ucts and experienced lower people-to-bedroom density
(p ≤ 0.040). The JIS high risk group had a higher socio-
economic status (SES), a lower HIV+ prevalence, were
mostly obese, more insulin resistant, and likely to be in a
partnered relationship (Table 1, p ≤ 0.040).
In bi-variate analysis, sex, SES, CI, WC, BMI, SSB and

WASO were significantly associated with HOMA-IR
(p ≤ 0.05). SES, BMI, CI, WC and HIV status were sig-
nificantly related to MetSz (p ≤ 0.027).
All models were significant (Fig. 1a-f, Fig. 2a-f, see

Additional file 1 for Fig. S1A-B, p ≤ 0.00191) and there
was no evidence of multicollinearity (VIF < 1.5, Toler-
ance > 0.75). The binary logistic regression models (Fig.
1a-c, Fig. 2a-c, Additional file 1: Fig. S1A) showed good
fit (Hosmer-Lemeshow: p ≥ 0.2223; AUC: 0.808–0.877).
The full models (OR ± 95% confidence intervals) for Fig.
1a-f, Fig. 2a-f and Additional file 1: Fig. S1A-B are avail-
able in Additional file 2.
In binary logistic regression models (Fig. 1a-c, Add-

itional file 1: Fig. S1A) males had significantly lower
odds for JIS-MetS high risk (OR≈0.15, p ≤ 0.006), and
similarly for HIV+ status in the NST and SFI models
(OR = 0.25, p ≤ 0.0035). Once adjusted for adiposity (CI),
sex was no longer a significant factor (p ≥ 0.097). How-
ever, HIV+ status remained a significant factor in most
models (OR≈0.26, p ≤ 0.048) (Fig. 1a-c).

There was a significant non-linear trend (U-shaped)
between JIS-MetS risk and NST (p = 0.0196) (Fig. 1a),
such that for NST Q2, there was 80% less likelihood of
being at high risk for JIS-MetS. There was also a signifi-
cant difference in frequencies between NST Q1 and Q2
(p = 0.021) (Fig. 1a).
There was a significant positive, linear trend between

JIS-MetS risk and SFI (p = 0.0001) (Fig. 1c). The odds of
high risk JIS-MetS for SFI Q3 was high (OR = 69.81,
8.44; 577.63), however the confidence intervals were
wide. There were significant differences between the fre-
quencies for Q3 versus Q1 and Q2 (p < 0.001) (Fig. 1c).
Being a current user of both alcohol and tobacco prod-

ucts carried a significant higher odds for JIS-MetS high
risk in the NST (OR = 4.51, p = 0.034) and SFI (OR =
6.55, p = 0.023) models (Fig. 1a-c).
In ordinal logistic regression models (Fig. 1d-f,

Additional file 1: Fig. S1B), being in the VM Q2 level,
significantly decreased the odds of being in HOMA-IR
Q3 by a factor of ≈0.31 (p ≤ 0.039). In contrast, for both
CI Q2 and Q3 levels, the odds of being in HOMA-IR
Q3 were significantly increased; Q2 OR≈2.9 and Q3
OR≈3.8, respectively (p ≤ 0.045) (Fig. 1d-f, Additional file
1: Fig. S1B).
There was a significant linear trend between TST and

HOMA-IR levels (p = 0.0444) (Fig. 1d). Compared to
TST Q1 and Q2, being in TST Q3 (longest sleep time)
increased the odds of being in the highest HOMA-IR
level (Q3) by a factor of 2.84 (p = 0.044) (Fig. 1d).
There were significant linear relationships between SE

and WASO, and HOMA-IR (p ≤ 0.007) (Fig. 1e). A high
SE (Q3) was 85% less likely to result in HOMA-IR Q3
(p = 0.001). Being in WASO Q2 and Q3 significantly in-
creased the odds for HOMA-IR Q3; OR = 3.17 and OR =
6.75, respectively (p ≤ 0.019).
SFI and AC were significantly associated with increas-

ing HOMA-IR levels (p ≤ 0.0201) (Fig. 1f). Being in SFI
Q2 and Q3 significantly increased the odds for HOMA-
IR Q3, OR = 4.67 (p = 0.004) and OR = 10.91 (p < 0.001),
respectively. For AC Q3 the odds of being in the
HOMA-IR Q3 was 3.01 (p = 0.020) (Fig. 1f).
In the TST, NST, SE, WASO and AC models (Fig. 1d-

e), being in SSB Q2 and Q3, increased the likelihood for
being in HOMA-IR Q3 by a factor of 3.51 to 4.77, but did
not reach statistical significance (p = 0.068 to p = 0.098).
Sleep quantity and quality measures featured concur-

rently and significantly in the TST, SE and SFI models
(Fig. 1d-f) (p ≤ 0.044).
Expressing sleep quantity and quality parameters in

terms of sleep health guidelines, we found significant
non-linear associations with JIS-MetS risk (p ≤ 0.0308)
(Fig. 2a-f). The relationship between sleep categories for
both TST and NST, and JIS-MetS risk were U-shaped,
the nadir at 7–9 h of sleep (Fig. 2a-b).
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Table 1 Descriptive statistics of demographic, behavioural and biological characteristics by sex and cardio-metabolic risk

Sex Cardio-metabolic Risk (JIS Harmonized definition)

Females
(n = 99)

Males
(n = 40)

p-values Low Risk
(< 3 factors)
(n = 90)

High Risk
(≥3 factors)
(n = 49)

p-values

Socio-demographic

Age (years) 52.0 (6.9) 53.9 (7.5) 0.165 51.9 (7.4) 53.9 (6.3) 0.112

Marital status (Married/Co-habiting) b 54.5 (54) 55.0 (22) 0.648 46.7 (42) 69.4 (34) 0.040

Level of education (formal education) b 94.9 (94) 97.5 (39) 0.978 95.6 (96) 95.9 (47) 0.766

Employed (Yes) b 27.3 (27) 27.5 (11) 0.567 73.3 (66) 71.4 (35) 0.844

SES Quintile 3.6 (1.3) 3.5 (1.3) 0.652 3.4 (1.3) 4.0 (1.3) 0.008

Housing density a

People/room 0.86 (0.75) 0.69 (0.78) 0.065 0.79 (0.75) 0.83 (0.88) 0.220

People/bedroom 1.67 (1.25) 1.37 (1.00) 0.040 1.50 (1.25) 1.67 (1.0) 0.330

Behavioural

Diet a

Fruit and vegetable intake (servings/day) 1.29 (1.00) 1.14 (0.00) 0.070 1.14 (1.00) 1.29 (2) 0.194

Sugar sweetened beverages (servings/day) 0.29 (0.10) 0.29 (0.00) 0.010 0.29 (0.00) 0.29 (1.00) 0.131

Health-compromising

Alcohol & Tobacco use (both current; Yes) 8.1 (8) 45.0 (18) < 0.001 18.9 (17) 18.4 (9) 0.972

Objectively-measured Sleep

Quantity

Sleep Time (minutes/day)

Total 458 (67) 456 (106) 0.901 456 (73) 460 (92) 0.818

Nocturnala 434 (61) 411 (72) 0.054 425 (60) 431 (73) 0.639

Sufficient sleep categories b

Total sleep time

< 7 h/day 32.3 (32) 40.0 (16) 0.666 31.1 (28) 40.8 (20) 0.115

7–9 h/day 52.5 (52) 45.0 (18) 56.7 (51) 38.8 (19)

> 9 h/day 15.2 (15) 15.0 (6) 12.2 (11) 20.4 (10)

Nocturnal sleep time

< 7 h/night 45.5 (45) 50.0 (22) 0.546 45.6 (41) 53.1 (26) 0.122

7–9 h/night 50.5 (50) 40.0 (16) 52.2 (47) 38.8 (19)

> 9 h/night 4.0 (4) 5.0 (2) 2.2 (2) 8.2 (4)

Quality

Wake after sleep onset (minutes) 54 (16) 44 (17) 0.001 51 (18) 51 (15) 0.839

Sleep efficiency (%) 87.6 (4.2) 89.5 (4.6) 0.017 88.2 (4.6) 88.0 (3.9) 0.789

Achieved ≥85% b 79.8 (79) 82.5 (33) 0.816 80.0 (72) 81.6 (40) 1.000

Activity counts during sleep (counts) 35,057 (9223) 27,448 (9223) 0.001 32,633 (9223) 33,298 (9223) 0.761

Sleep fragmentation index (%) 26.7 (7.0) 28.2 (6.6) 0.243 26.5 (6.9) 28.3 (6.8) 0.151

Within-person total sleep time SD (minutes) a 85 (51) 91 (92) 0.266 86 (53) 88 (63) 0.968

Objectively-measured Physical Activity

VM counts/day (× 106) 2.49 (0.63) 2.00 (0.77) < 0.001 2.33 (0.75) 2.38 (0.60) 0.669

Ambulation (steps/day) 14,288 (3691) 15,132 (6492) 0.443 14,470 (432) 14,681 (4378) 0.838

Biological

Females (Yes) – – – 65.6 (59) 81.6 (40) 0.052

Waist circumference (cm) 93.0 (16.3) 80.8 (9.7) < 0.001 83.5 (14.0) 100.7 (12.4) < 0.001
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Table 1 Descriptive statistics of demographic, behavioural and biological characteristics by sex and cardio-metabolic risk (Continued)

Sex Cardio-metabolic Risk (JIS Harmonized definition)

Females
(n = 99)

Males
(n = 40)

p-values Low Risk
(< 3 factors)
(n = 90)

High Risk
(≥3 factors)
(n = 49)

p-values

Body mass index (kg/m2) 30.4 (7.6) 21.7 (3.8) < 0.001 25.3 (6.9) 32.6 (7.2) < 0.001

Body mass index categories b

Under- weight (< 18.5 kg/m2) 3.0 (3) 17.5 (7) < 0.001 10.0 (9) 2.0 (1) < 0.001

Normal weight (18.5–24.9 kg/m2) 21.2 (21) 55.0 (22) 43.3 (39) 8.2 (4)

Overweight (25–29.99 kg/m2) 23.2 (23) 27.5 (11) 24.4 (22) 24.5 (12)

Obese (≥30 kg/m2) 52.5 (52) 0.0 (0.0) 22.2 (20) 65.3 (32)

Conicity Index 1.23 (0.10) 1.23 (0.08) 0.940 1.20 (0.09) 1.29 (0.08) < 0.001

HIV status (Yes) b 22.2 (22) 25.0 (10) 0.824 28.9 (26) 12.2 (6) 0.034

Resting SBP (mmHg) 126 (20) 126 (24) 0.870 120 (17) 138 (22) < 0.001

Resting DBP (mmHg) 81 (11) 78 (13) 0.157 77 (11) 86 (12) < 0.001

MAP (mmHg) 96 (13) 94 (16) 0.384 91 (12) 104 (14) < 0.001

Parity a,d 4 (2) – – 4 (2) 4 (3) 0.775

Cardio-metabolic

Total Cholesterol (mmol/l) 4.10 (1.36) 3.72 (1.30) 0.139 4.00 (1.44) 3.98 (1.15) 0.972

HDL-Cholesterol (mmol/l) 1.10 (0.47) 1.07 (0.52) 0.865 1.16 (0.53) 0.95 (0.34) 0.007

LDL-Cholesterol (mmol/l) 2.51 (1.10) 2.15 (0.96) 0.072 2.40 (1.14) 2.40 (0.95) 0.997

Triglyceride (mmol/l) 1.10 (0.58) 1.10 (0.61) 0.959 0.95 (0.47) 1.38 (0.68) < 0.001

Glucose (mmol/l) 5.32 (1.89) 5.41 (1.86) 0.811 4.85 (1.26) 6.26 (2.42) < 0.001

Insulin (μIU/ml) a 6.91 (7.75) 3.14 (5.61) 0.001 4.12 (6.27) 7.60 (7.05) 0.001

HOMA-IR a 1.51 (1.91) 0.71 (1.72) 0.003 0.90 (1.53) 2.09 (1.96) 0.003

HOMA-IR categories b

Q1 (≤0.82) – – – 42.2 (38) 16.3 (8) 0.002

Q2 (0.83–2.09) – – 33.3 (30) 34.7 (17)

Q3 (2.10) – – 24.4 (22) 49.0 (24)

Metabolic Syndrome (JIS Harmonised definition) b

No risk factor 11.1 (11) 12.5 (5) 0.006 – – –

1 risk factor 15.2 (15) 42.5 (17) – –

2 risk factors 33.3 (33) 22.5 (9) – –

≥ 3 risk factors 40.4 (40) 22.5 (9) – –

Waist circumference (male: ≥86 cm, females: ≥92 cm) 58.6 (58) 35.0 (14) 0.015 31.1 (28) 89.8 (44) < 0.001

Blood pressure (SBP: ≥135mmHg, DBP: ≥85 mmHg) 42.4 (42) 50.0 (20) 0.266 27.8 (25) 75.5 (37) < 0.001

HDL-Cholesterol (male:< 1 mmol/, female< 1.3 mmol/l) 72.7 (72) 45.0 (18) 0.003 53.3 (48) 85.7 (42) < 0.001

Triglyceride ≥1.7 mmol/l)) 15.2 (15) 7.5 (3) 0.276 5.6 (5) 26.5 (13) 0.001

Glucose (≥5.6 mmol/l) 19.2 (19) 27.5 (11) 0.362 11.1 (10) 40.8 (20) < 0.001

Metabolic Syndrome z-score 7.7 (−7.3; 9.4)c 6.1 (−4.5; 6.6) < 0.001 −1.17 (2.50) a 2.21 (1.97) 0.599

Data reported as mean (SD), a median (IQR), b % (n) or c variance (minimum; maximum); d low risk: n = 59, high risk: n = 40; DBP Diastolic Blood Pressure, HOMA-IR

Homeostasis Model Assessment of Insulin Resistance, HIV Human Immunodeficiency Virus, JIS Joint Interim Statement, MAP Mean Arterial Pressure = 2
.
3
DBP + 1

.
3

SBP, Nocturnal 18 h01 - 05 h59, SES Socio-Economic Status, SBP Systolic Blood Pressure, VM Vector Magnitude
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Fig. 1 (See legend on next page.)
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In binary logistic regression models (Fig. 2a-c) males
had significantly lower odds for JIS-MetS high risk
(OR≈0.14, p = 0.004), and similarly for HIV+ (OR≈0.26,
p ≤ 0.0034). Once adjusted for adiposity (CI), sex was no
longer a significant factor (p ≥ 0.121). However, HIV+
status remained a significant factor in most models
(OR≈0.23, p ≤ 0.045) (Fig. 2a-c).
In ordinal logistic regression models (Fig. 2d-f) phys-

ical activity (VM Q2) significantly reduced the odds of
being in HOMA-IR Q3 by a factor of ≈0.26 (p ≤ 0.010).
For both CI Q2 and Q3 levels, the odds of being in
HOMA-IR Q3 were significantly increased (Q2
OR≈3.16, Q3 OR≈3.89, p ≤ 0.022). For SE ≥85%, there
was a 76% lower likelihood of being in HOMA-IR Q3
(p = 0.010). Significantly more participants were classi-
fied as low HOMA-IR (Q1) in the SE ≥85% category
(Fig. 2d).
In the TST, NST and SE models (Fig. 2d and f), being

in SSB Q2, increased the odds for being in HOMA-IR
Q3 by a factor of 3.24 to 3.65, but did not reach statis-
tical significance (p = 0.074).

Discussion
This analysis is novel in that, as far as the authors are
aware, this is the first free-living, actigraphy-measured
sleep and cardiometabolic health study from a rural
South African setting.
The main findings of this analysis were first that sleep

quality and quantity measures were independently asso-
ciated with HOMA-IR, and to a lesser extent JIS-MetS.
Second, we found linear and non-linear (U-shaped) rela-
tionships between categories of sleep quantity and car-
diometabolic risk. Third, except for sleep variability, all
sleep quality measures were consistently associated with
HOMA-IR.
The level of JIS-defined MetS within rural sub-Sahara

African settings is 12.0% (95%CI: 4.0; 23.4) which is sub-
stantially lower than in our sample (35.3%) and is likely
due to variations in levels of central adiposity, differing
stages of the epidemiological transition and variations in
the implementation of preventative programmes (Jaspers
Faijer-Westerink et al. 2020). However, the mean

prevalence reported in a rural South African setting for
the ≥45 year age groups (males: 17.9%; females: 42.2%)
(Motala et al. 2011) is similar to our results (males:
22.5%; females: 40.4%).
Our findings are in agreement with the linear relation-

ship between sleep duration and HOMA-IR in black,
urban women, although we found far more women had
short sleep time compared with self-report measures
(Rae et al. 2018). A recent study from the METS group
found long sleep duration in a black, urban South Afri-
can sample (Rae et al. 2020). The accuracy with which
sleep is self-reported, and how sleep questions are inter-
preted across different South African populations is un-
known (Rae et al. 2018; Rae et al. 2020).
Unadjusted sleep quantity did not differ significantly

across the sexes, which is in contrast to self-report mea-
sures (Rae et al. 2018). Sleep quality was poorer in fe-
males, although sex did not reach significance in most
HOMA-IR models. Poor sleep quality in females is likely
due to environmental and social determinants (Cook
et al. 2020).
Some have speculated that poor sleep quality might be

underpinning the long self-reported sleep durations in
South African settings and hence the poorer cardiometa-
bolic health associated with long sleep (Rae et al. 2018;
Rae et al. 2020). Our results suggest that fragmented,
poor sleep quality, independent of sleep duration might
be more important than sleep duration. In young adoles-
cents objectively-measured sleep quality, independent of
sleep duration, was associated with cardiometabolic risk,
such that increasing sleep duration and better sleep
quality were associated with better cardiometabolic
health (Feliciano et al. 2018). Future analyses need to ex-
plore the effect of the interaction between sleep quantity
and quality, and cardiometabolic health (Lu et al. 2020).
Higher sleep variability for objectively-measured sleep

quantity and quality measures has been shown to be as-
sociated with less favourable cardiometabolic health
(Baron et al. 2017). In contrast, we found no association
between sleep variability in total sleep time and cardio-
metabolic health. Median sleep variability was 22 min
higher in our rural study compared with an

(See figure on previous page.)
Fig. 1 Cardiometabolic risk categories across quantiles of accelerometry-derived sleep-quantity and -quality measures. a-c Binary risk categories for the
JIS Harmonised Definition. Nocturnal sleep time (minutes) and Total sleep time (minutes), * OR 0.20 (0.05, 0.71); b Sleep efficiency (percentage) and
Wake after sleep onset (minutes); c Sleep fragmentation index (%) and Activity counts during sleep (counts), †OR 69.80 (8.44, 577.63). Fully-adjusted
binary logistic regression models (socio-demographic, behavioural, biological), excluding body composition measures (see Additional file 1). d-f Tertiles
of HOMA-IR. d Nocturnal sleep time (minutes) and Total sleep time (minutes), ‡ OR 2.84 (1.03, 7.83); e Sleep efficiency (percentage) and Wake after
sleep onset (minutes), § OR 0.15 (0.05, 0.45), ¶ OR 3.17 (1.21, 8.32), # OR 6.75 (2.54, 17.91); f Sleep fragmentation index (%) and Activity counts during
sleep (counts), ** OR 4.67 (1.64, 13.30), †† OR 10.91 (3.11, 38.33), ‡‡ OR 3.01 (1.19, 7.64). Fully-adjusted ordinal logistic regression models (socio-
demographic, behavioural, biological), including body composition measures (Conicity Index) (see Additional file 1). The horizontal lines between the
sleep parameter tertiles (Q1-Q3) and vertical lines between the HOMA-IR tertiles (HOMA-IR Q1/Q2/Q3) indicate significant post hoc differences
between tertiles at either end of the line. Cut-points for sleep parameter quantiles (Q1/Q2/Q3) are presented in Table S1 (see Additional file 3)
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industrialised, urban, adult sample; 87 min vs. 65 min,
respectively (DeSantis et al. 2019).
Future investigations into the sleep and cardiometa-

bolic health of this rural group will require the construc-
tion of a composite sleep health score as opposed to
relying solely on individual sleep dimensions (DeSantis
et al. 2019).
In contrast with some self-reported PA studies (Rae

et al. 2018), we found PA volume to be significantly
and independently related to HOMA-IR, but not as-
sociated with JIS-MetS risk as in other self-report
studies (Rae et al. 2020). Interestingly, other lifestyle
factors such as concurrent alcohol and tobacco use,
and the consumption of SSB were independently as-
sociated with poor cardiometabolic health. The con-
current use of alcohol and tobacco is associated with
poorer cardiometabolic health through dyslipidemia
and abdominal obesity (Slagter et al. 2014). Although
the association with SSB did not quite reach statistical
significance, there is evidence that the consumption
of SSB is linked with poor cardiometabolic health
through insulin resistance, visceral adiposity, dyslipid-
emia and inflammation, even within rural environ-
ments (Vorster et al. 2014).

Conclusion
We found objectively-measured sleep quality indices
were significantly associated with HOMA-IR in a rural
South African sample. Future research in this population
should include composite sleep health indices, and de-
tailed data for environmental and social factors which
impact sleep health. This study suggests that poor sleep
quality, independent of sleep duration, may be an im-
portant risk factor for the development insulin resist-
ance. Identifying and addressing factors which influence
sleep quality should be considered as integral to strat-
egies and interventions aimed at addressing cardiometa-
bolic health in this rural population.

Limitations
Due to the small sample size and cross-sectional, con-
venience sampling in this study, the results cannot be
readily generalized, nor can causality be shown.
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