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Abstract 

Background:  While the importance of adequate sleep duration to normal brain development is well known, more 
studies are needed to characterize how undiagnosed sleep disturbance other than suboptimal sleep duration may 
impact brain development. In this study we aim to understand the relationships between sleep disturbance measures 
and cortical morphometry in typically-developing children without previous diagnoses of sleep pathology.

Methods:  Healthy 8-year-old children (30 boys, 37 girls) without clinical diagnosis of sleep disorders were prospec‑
tively recruited for brain MRI and their parents completed the Children’s Sleep Habits Questionnaire (CSHQ). Total 
sleep disturbance score, as well as 8 subscales including bedtime resistance, sleep onset delay, sleep duration, sleep 
anxiety, night waking, parasomnias, sleep disordered breathing, and daytime sleepiness were calculated, and their 
relationships with cortical morphometry features including cortical gray matter volume, cortical thickness, and sur‑
face area were investigated, controlled for total cortical volume and sex.

Results:  The CSHQ total sleep disturbance score significantly correlated with cortical surface area in a cluster in the 
left middle temporal gyrus (P < 0.001, R = -0.54). In addition, the bedtime resistance subscale negatively correlated 
with cortical surface area in a cluster in the right fusiform gyrus (P < 0.001, R = -0.50). No other clusters showed signifi‑
cant relationships between CSHQ total score or subscales and cortical features for this cohort.

Conclusion:  Significant relationships between sleep disturbance scores in typically-developing children without 
clinical diagnosis of sleep pathology and their brain cortical surface area in two temporal lobe regions were identified, 
suggesting that undiagnosed sleep disturbance may potentially impact brain development even in healthy children.

Keywords:  Sleep disturbance, Children’s Sleep Habits Questionnaire, Gray matter volume, Cortical surface area, 
Cortical thickness
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Introduction
The importance of adequate sleep to normal brain devel-
opment in children is well known (Bell-McGinty et  al. 
2004). Sleep is considered essential for learning and 
school performance in children (Cheng 2020; Collins 
et  al. 1994), however current data indicates that most 

school-age children receive less than the recommended 
amount of sleep per night (Collins et  al. 1994). Sleep 
changes significantly over development in infants, chil-
dren and adolescents (Dale et  al. 1999). Infant sleep is 
highly fragmented, occurring in short bouts through the 
day and night, a rhythm that gradually consolidates to 
longer bouts of nighttime sleep with a reduction in total 
sleep time from 12–15 h in infants to 9–11 h for school-
aged children (Desikan et al. 2006; Ducharme et al. 2016; 
Dutil et  al. 2018). The developmental changes of sleep 
occur in concert with brain structural and functional 
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development (Bell-McGinty et al. 2004; Fischl et al. 1999; 
Fjell et  al. 2015; Gogtay et  al. 2010), and are associated 
with important neural behavioral factors including lan-
guage (Hirshkowitz et  al. 2015), memory (Cheng 2020; 
James et  al. 2017), and executive function (Knickmeyer 
et al. 2008; Kocevska 2017).

During normal brain development, cortical gyrification 
starts in the first trimester of gestation and continues in 
the fetal and postnatal period, while synapse formation 
develops dynamically in utero and in early life, followed 
by gradual pruning throughout childhood. The brain cor-
tical developmental trajectory can be reflected in imag-
ing measures of cortical features, as gray matter volume 
and cortical surface area increase rapidly during the first 
year of life and continue to grow gradually through young 
childhood until preadolescence (Konen et  al. 2015; Li 
et  al. 2007; Lucas-de la Cruz et  al. 2016), while cortical 
thickness reaches peak between age 1–2  years (Macey 
et al. 2018)and starts to decrease thereafter (Macey et al. 
2018). Like many other family environmental and life-
style factors that may potentially impact children’s brain 
development, sleep quality is also important for brain 
development in children, as studies have demonstrated 
significant relationships between sleep duration and 
cortical gray matter volume in children with impacts on 
cognitive performance (Gogtay et  al. 2010), and reduc-
tion of cortical gray matter volume (Mindell et al. 2016)
and changes of cortical thickness (Okada et  al. 2017)
in children with obstructive sleep apnea. Nevertheless, 
more studies are needed to characterize the relationships 
between sleep quality and children’s brain structural 
development in terms of cortical morphometry such as 
gray matter volume, cortical thickness, and surface area. 
In addition, most sleep and brain development studies 
have focused on sleep duration only and pathologies such 
as obstructive sleep apnea, with few examining the rela-
tionships between brain development and other common 
types of sleep disturbance, especially in healthy, typically-
developing children (Owens et al. 2000).

In this study, we recruited healthy 8-year-old children 
without clinical diagnosis of sleep disorders for an MRI 
study of the brain cortical structure and an assessment 
of sleep disturbance using the parent-reported Children’s 
Sleep Habits Questionnaire (CSHQ). Cortical gray mater 
volume, cortical thickness, and surface area in different 
brain regions were measured, and total sleep disturbance 
score as well as 8 subscales representing different aspects 
of sleep disturbance were calculated. The relationships 
between these brain cortical morphometry features and 
sleep disturbance scores in children were then evalu-
ated. We hypothesized that increased sleep disturbance 
reflected by higher CSHQ total score or specific sub-
scale scores would be associated with changes in cortical 

morphometry parameters such as decreased cortical sur-
face area.

Methods
Subjects
All experimental procedures were approved by the Insti-
tutional Review Board of the University of Arkansas for 
Medical Sciences. All parents provided written informed 
consent, and all children provided assents. Potential sub-
jects were recruited through print advertisements placed 
in local newspapers, magazines, and circulars; digital 
advertisements on local and institutional websites and 
social media; study flyer/postcards posted in physicians’ 
offices, pharmacies, schools, churches, kid-targeted rec-
reation centers and retail stores; displays at health fairs; 
and television/radio commercials. Eligibility screening 
was completed by a clinical research promoter using a 
standard telephone-administered recruitment/screening 
script. Inclusion criteria for the participants included: 
healthy, age 7.5–8.5 years; right-handed; parental report 
of full-term gestation at birth; parental report of birth 
weight between 5-95th percentile-for-age; and current 
body mass index between 5-95th percentile-for-age. 
Exclusion criteria for the participants included: mater-
nal use of alcohol, tobacco, drug, or psychotropic medi-
cations during pregnancy; illnesses and chronic diseases 
which may affect children’s growth or development; psy-
chological/psychiatric diagnoses; neurological impair-
ment or injury; history or current use of anticonvulsant, 
stimulant, or mood stabilizing medications; and history 
or current use of remedial special education services. 
Eighty-one children were initially enrolled, and 71 of 
them had valid MRI. Among these, 3 did not complete 
the sleep questionnaire, and 1 had a total sleep distur-
bance score more than 2 standard deviations higher 
than the average score and was therefore excluded as an 
outlier. In total, 67 children had both completed parent-
reported sleep disturbance data and valid MRI data and 
were included in this study. The demographic informa-
tion of the participants as well as their sleep test scores 
are listed in Table 1.

MRI data acquisition
All children had a brain MRI examination done at the 
Radiology Department of the Arkansas Children’s Hos-
pital on a 1.5  T Achieva scanner (Philips Healthcare, 
Best, the Netherlands) with 60-cm bore size, 33-mT/m 
gradient amplitude, and 100-mT/m/ms maximum slew 
rate. The built-in body coil was used as a transmitter, 
and a standard 8-channel sensitivity encoding head coil 
was used as a receiver. The imaging protocol included 
a T1-weighted 3D turbo field echo pulse sequence for 
structural imaging with the following parameters: 7.3 ms 



Page 3 of 8Na et al. Sleep Science Practice            (2021) 5:16 	

TR; 3.4 ms TE; 8° flip angle; 1 × 1x1 mm acquisition voxel 
size; 256 × 232x150 matrix size; 2 averages; and 7 min of 
scan time. All T1 Images were reviewed on the scanner at 
the time of scanning, and scans with substantial motion 
artifacts were repeated. Children unable to complete the 
scan with valid data were excluded.

MRI data analysis
All MRI data were exported to a Macintosh workstation 
with the FreeSurfer software (version 7.1.0, developed 
by the Laboratory for Computational Neuroimaging at 
the Athinoula A. Martinos Center for Biomedical Imag-
ing) installed for cortical analysis. Standard preprocess-
ing steps including motion correction, non-brain tissue 
removal, and transformation to the Talairach space were 
applied (Papeo et al. 2019). Image was segmented to gray 
matter, white matter, and cerebrospinal fluid (CSF), fol-
lowed by intensity normalization, tessellation of corti-
cal gray/white matter boundaries, automated topology 
correction, and surface deformation (Philby et  al. 2017; 
Remer et al. 2017). Cortical surface models were gener-
ated, inflated, and based on the computation of the local 
curvature, surface area and surface normal, registered to 
a spherical atlas for cortical parcellation (Ronan 2019). 
Moreover, a full-width/half-max Gaussian blurring ker-
nel of 10 mm was applied to smooth the parameter maps 
after resampling the data onto the average subject. All 
processed or intermediate images were visually inspected 
to ensure quality. Cortical thickness was estimated as 
the shortest distances between gray/white to gray/CSF 
boundaries; surface area was measured by assigning an 
area to each vertex equal to the average of its surround-
ing triangles; and cortical gray matter volume was meas-
ured by the volume in between the gray/white and gray/
CSF boundaries. These parameter maps were then fed to 

a General Linear Model (GLM) in FreeSurfer to evaluate 
relationships with sleep disturbance scores.

Sleep disturbance evaluation
All parents completed a Children’s Sleep Habits Ques-
tionnaire (CSHQ) onsite for their children. Detailed 
instructions were given and any questions they had 
regarding completing the CSHQ questionnaire were 
answered by trained research staff. The CSHQ includes 
33 sleep items for scoring and assesses 8 subscales of 
sleep disturbance including bedtime resistance, sleep 
onset delay, sleep duration, sleep anxiety, night waking, 
parasomnias, sleep disordered breathing, and daytime 
sleepiness. Thirty-one items were answered as “usually” 
(if it occurs 5 or more times a week) which translated 
to a numerical score of 3 for the item, “sometimes” (if it 
occurs 2–4 times a week) which translated to a numeri-
cal score of 2 for the item, or “rarely” (if it occurs 1 time 
a week or never occurs) which translated to a numeri-
cal score of 1 for the item. Two items were answered as 
“falls asleep” which translated to a numerical score of 3, 
“very sleepy” which translated to a numerical score of 2, 
or “not sleepy” which translated to a numerical score of 
1. The CSHQ subscales as well as the total CSHQ sleep 
disturbance score were calculated using the provided for-
mulas based on the 33 individual item scores. The validity 
of CSHQ in screening for children with sleep disorders 
has been verified (Sadeh et al. 2014; Schlarb et al. 2010; 
Seehagen et al. 2015). The internal consistency between 
overall score and subscales, the inter-rater consistency, 
and the test–retest reliability all appeared to be good 
(Short et  al. 2018). In addition, correlations between 
CSHQ assessments and actigraphy measured sleep qual-
ity indicators such as sleep latency and awakenings have 
been reported (Taveras et al. 2017).

Table 1  Demographic information of the participants and their CSHQ sleep disturbance scores

Mean ± Standard Deviation Range [min, max]

Sex 30 boys and 37 girls

Age at MRI (years) 7.9 ± 0.3 [7.5, 8.5]

Total Sleep Disturbance Score 40.1 ± 4.0 [33, 51]

Bedtime Resistance 7.0 ± 1.4 [5, 12]

Sleep Onset Delay 1.4 ± 0.6 [1, 3]

Sleep Duration 3.3 ± 0.6 [3, 6]

Sleep Anxiety 4.8 ± 1.0 [4, 7]

Night Waking 3.4 ± 0.8 [3, 7]

Parasomnias 8.1 ± 1.2 [7, 11]

Sleep Disordered Breathing 3.1 ± 0.4 [1, 4]

Daytime Sleepiness 11.6 ± 2.4 [8, 19]
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Statistics
Relationships between sleep disturbance total score and 
subscales and brain cortical features such as cortical gray 
matter volume, surface area, and cortical thickness were 
tested using GLM with the DODS (different offset, dif-
ferent slope) method in FreeSurfer. Specifically, to test 
the relationships between sleep disturbance scores and 
cortical morphometry, GLMs with DODS were used 
to fit for each vertex for cortical thickness, cortical sur-
face area, or gray matter volume, which were defined 
as dependent variables. Sex was included as a covari-
ate, because of reported sex differences in brain cortical 
development in children. Total cortical volume was also 
included as a covariate in the analysis to account for vari-
ations in individual brain cortical size. All analyses were 
applied to each hemisphere separately. The operations 
in the FreeSurfer GLM were performed at each voxel or 
vortex separately. The input were the cortical gray mat-
ter volume, surface area, and cortical thickness feature 
maps smoothed with a Gaussian kernel with a 10  mm 
full-width/half-maximum. The global design matrix with 
a FreeSurfer group descriptor file of DODS were fed 
into the GLM, with the rows representing all subjects, 
and columns representing the covariates and the corre-
sponding sleep scores in each evaluation. To correct for 
multiple comparisons, large number of simulations were 
performed under the null hypothesis to see how often 
the value of a statistic from the true analysis is exceeded. 
This simulator is based on FSL’s permuation simulator 
(randomise) and AFNI’s null-z simulator (AlphaSim) and 
this approach works well for surface-based data as tradi-
tional random field theory is harder to implement. In our 
study, P ≤ 0.0001 threshold was used for cluster forming 
for the vertex-wise analyses. Clusters were obtained after 
regressing out the effects of all covariates. To identify 
clusters with significant relationships (between sleep dis-
turbance scores and cortical morphometry features) after 
appropriate multiple comparison correction, the cluster-
wise precomputed Z Monte Carlo simulation with 10,000 
iterations was applied to every cluster. A corrected clus-
ter-wise P of ≤ 0.05 was regarded as significant.

After clusters with significant relationships were 
identified, the average cortical morphometry param-
eters in each cluster for each subject were extracted and 
correlated with sleep disturbance scores to calculate 

correlation coefficients using Spearman’s Partial Correla-
tion test with sex and total cortical volume controlled.

Results
All children had normal MRI on the T1 weighted images 
without incidental findings requiring medical attention. 
The CSHQ total sleep disturbance score and the 8 sub-
scales (Table 1) all have mean values and standard devia-
tions comparable to a published cohort on a community 
sample of school age children with larger sample size 
(Sadeh et al. 2014). The total sleep disturbance scores for 
all children were lower than the reported average score 
(54) of a clinical cohort, other than the single subject that 
was excluded (who had a total score of 62).

The cortical morphometry analysis revealed two clus-
ters with significant relationships between sleep distur-
bance scores and cortical features. These clusters were 
summarized in Table 2. Specifically, the CSHQ total sleep 
disturbance score significantly correlated with cortical 
surface area in one cluster in the left middle temporal 
gyrus (cluster-wise corrected P < 0.001, correlation coef-
ficient R = -0.54) (Fig. 1). In addition, the bedtime resist-
ance subscale (determined by measures of frequency of: 
going to bed at the same time; falling asleep in own or 
other’s bed; needing parent in room to sleep, struggling 
at bedtime, and being afraid of sleeping alone) negatively 
correlated with cortical surface area in one cluster in the 
right fusiform gyrus (cluster-wise corrected P < 0.001, 
correlation coefficient R = -0.50). (Fig. 2). These negative 
relationships suggest that the more sleep disturbance, the 
less cortical surface area development in temporal brain 
regions.

While cortical gray matter volume and cortical thick-
ness were also calculated and their relationships with 
sleep disturbance scores were also evaluated in the GLM 
model, there were no clusters showing significant rela-
tionships with corrected P ≤ 0.05.

Discussion
There is behavioral evidence that sleep is important for 
cognitive function in children (Tham et  al. 2017), and a 
better understanding of the developmental relationships 
between sleep, brain regional and network structure and 
cognitive function in childhood is needed. A recent large 
scale study in 9–11 year old children identified significant 

Table 2  Clusters in brain cortex with significant relationships (cluster-wise corrected P ≤ 0.05) between sleep disturbance scores and 
cortical morphometry features. L: left brain hemisphere; R: right brain hemisphere

Location of cluster Cluster Size (mm2) Sleep Disturbance
Type

Cortical Feature Type

L: middle temporal gyrus 444 CSHQ total Surface area

R: fusiform gyrus 339 Bedtime resistance Surface area
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relationships between longer sleep duration and higher 
brain volume in orbitofrontal cortex, prefrontal and tem-
poral cortex, precuneus, and supramarginal gyrus (Gog-
tay et  al. 2010). Moreover, higher cognitive scores were 
associated with higher volume in some of these brain 
regions (Gogtay et  al. 2010). Nevertheless, relationships 
between brain structure and other aspects of sleep qual-
ity (such as different types of sleep disturbance) were not 
investigated in that study, and other cortical features such 
as surface area and thickness were not investigated. In 

our study, we report results for the relationship between 
brain cortical morphometric features (including corti-
cal gray matter volume, cortical surface area, and corti-
cal thickness) and parent-reported sleep disturbance in 
younger school aged children.

Our results revealed two areas in the temporal lobe 
which showed decreased cortical surface area that was 
related to sleep disturbances. A cluster in the left middle 
temporal gyrus was significantly related to overall sleep 
disturbances reflected by the CSHQ total scores. This 

Fig. 1  The image on the left shows a cluster in the left middle temporal (LMT) gyrus with significant relationship (cluster-wise corrected P ≤ 0.05) 
between CSHQ total sleep disturbance score and cortical surface area, in standard MNI305 atlas. The scatter plot on the right illustrates the data of 
CSHQ total score vs. cortical surface area in this cluster for all subjects, and the correlation coefficient calculated by Spearman’s Partial Correlation 
test

Fig. 2  The image on the left shows a cluster in the right fusiform (RF) gyrus with significant relationship (cluster-wise corrected P ≤ 0.05) between 
bedtime resistance and cortical surface area, in standard MNI305 atlas. The scatter plot on the right illustrates the data of CSHQ subscale (bedtime 
resistance) vs. cortical surface area in this cluster for all subjects, and the correlation coefficient calculated by Spearman’s Partial Correlation test
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result is consistent with the recent study reporting reduc-
tion in temporal cortical volume to be associated with 
shorter sleep duration and poorer cognitive function 
(Gogtay et  al. 2010). Together, these data suggest that 
poorer sleep quality and reduced duration are associated 
with developmental changes in the temporal lobe that 
adversely affect cognitive function. The middle temporal 
gyrus is a temporal association area that is part of several 
functional brain networks, including a fronto-temporo-
parietal executive control network, a social-semantic net-
work and an auditory processing network. Furthermore, 
the middle temporal gyrus has been associated with the 
representation of meaning, with studies reporting activa-
tions related to observed actions, word processing and 
semantic memory (Urbain et  al. 2016; Vermeulen et  al. 
2019). Children with obstructive sleep apnea exhibited 
widespread reductions in cortical thickness and volume, 
including the temporal cortical regions (Mindell et  al. 
2016; Wang et  al. 2019)that are suggested to be due to 
disruptions in normal developmental processes rather 
than the neurodegenerative changes posited for adult 
patients of obstructive sleep apnea (Wang et al. 2019).

We also found significant correlations between corti-
cal surface area of the right fusiform gyrus and the CSHQ 
subscale score for bedtime resistance. The fusiform gyrus 
is functionally a part of the temporal lobe network, where 
it forms part of the posterior visual processing stream. 
In its posterior divisions, the region shows functional 
connections to superior temporal gyrus, parietal and 
frontal regions with the left fusiform gyrus more tightly 
coupled to areas responsible for visual-language percep-
tion (Wurm et al. 2019). One previous study has shown 
decreased activation in non-verbal recognition task post 
sleep deprivation in the right fusiform gyrus (Zhang et al. 
2016), and another study has shown decreased response 
to inhibitary control in the fusiform gyrus after sleep 
deprivation (Zhao et al. 2019), both suggesting potential 
functional consequences to this region associated with 
sleep disturbance.

Our study was not designed to test the causal relation-
ships between sleep disturbance and changes in brain 
development, or to explore the underlying mechanisms 
for relationships between them. None of the children 
in our cohort had a diagnosed sleep disorder and their 
sleep disturbance scores were all below those of clinical 
cohorts. Nevertheless, we were still able to demonstrate 
statistically significant relationships between variations 
in sleep disturbance scores and changes in brain cortical 
morphometry features, particularly cortical surface area, 
in specific brain regions. Our results indicate that qual-
ity of sleep (in terms of less sleep disturbance) may be 
important for the typical developing brain.

There are several limitations for this study. The study 
was cross-sectional and regions identified with relation-
ships between sleep disturbance and changes in cortical 
morphometry features were relatively small. A longitu-
dinal cohort with a larger sample size may identify more 
regions with consistent or transit correlations between 
cortical morphometry features and sleep disturbance, 
and may allow control for more potential confounding 
factors such as family environment and lifestyle. Fur-
thermore, while psychological diagnosis was an exclu-
sion criterion, subclinical depression and anxiety were 
not screened and measures of depressive and anxiety 
symptoms were not available, which may be important 
mediating factors changing the relationships between 
sleep disturbance and cortical surface area in these chil-
dren. Finally, while we have demonstrated brain regions 
showing relationships between cortical structural devel-
opment and sleep disturbance, we do not have functional 
outcome measures specifically tied with these brain 
regions.

Conclusion
Significant relationships between parent-reported sleep 
disturbance scores (including total scores and sub-
scales such as bedtime resistance) in typically develop-
ing children and their brain cortical surface area in two 
temporal lobe regions were identified, suggesting that 
undiagnosed sleep disturbance may potentially impact 
brain development even in healthy children.
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ing; GLM: General linear model.
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